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Abstract In this work, the problem of a thermoelastic thick plate with a permeating
substance in contact with one of the bounding planes is considered in the context of the
theory of generalized thermoelastic diffusion with one relaxation time. The bounding
surface of the half-space is taken to be traction free and is subjected to a time-depen-
dent thermal shock. The chemical potential is also assumed to be a known function of
time on the bounding plane. Laplace transform techniques are used. The solution is
obtained in the Laplace transform domain by using a direct approach. The solution of
the problem in the physical domain is obtained numerically using a numerical method
for the inversion of the Laplace transform based on Fourier expansion techniques. The
temperature, displacement, stress, and concentration as well as the chemical potential
are obtained. Numerical computations are carried out and represented graphically.

Keywords Generalized thermoelasticity · Thermal shock · Thermoelastic diffusion

1 Introduction

Biot [1] developed the coupled theory of thermoelasticity to deal with a defect of the
uncoupled theory that mechanical causes have no effect on the temperature. However,
this theory shares a defect of the uncoupled theory in that it predicts infinite speeds of
propagation for heat waves.
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Lord and Shulman [2] introduced the theory of generalized thermoelasticity with
one relaxation time for the special case of an isotropic body. This theory was extended
by Sherief [3] and by Dhaliwal and Sherief [4] to include the anisotropic case. In this
theory, a modified law of heat conduction including both the heat flux and its time
derivative replaces the conventional Fourier’s law. The heat equation associated with
this theory is hyperbolic and hence eliminates the paradox of infinite speeds of propa-
gation inherent in both the uncoupled and coupled theories of thermoelasticity. For this
theory, Ignaczak [5] studied uniqueness of solution; Sherief [6] proved uniqueness and
stability. Anwar and Sherief [7] and Sherief [8] developed the state-space approach to
this theory. Anwar and Sherief [9] completed the integral equation formulation. Sherief
and Hamza [10,11] solved some two-dimensional problems and studied wave prop-
agation. Sherief and El-Maghraby [12,13] solved two crack problems. El-Maghraby
[14–16] solved some two-dimensional problems for media affected by heat sources
and body forces.

Diffusion can be defined as the random walk, of an ensemble of particles, from
regions of high concentration to regions of lower concentration. There is now a great
deal of interest in the study of this phenomenon, due to its many applications in geo-
physics and industrial applications. In integrated circuit fabrication, diffusion is used
to introduce “dopants” in controlled amounts into the semiconductor substrate. In
particular, diffusion is used to form the base and emitter in bipolar transistors, form
integrated resistors, and form the source/drain regions in MOS transistors and dope
poly-silicon gates in MOS transistors. In most of these applications, the concentration
is calculated using what is known as Fick’s law. This is a simple law that does not take
into consideration the mutual interaction between the introduced substance and the
medium into which it is introduced or the effect of the temperature on this interaction.

Nowacki [17–20] developed the theory of thermoelastic diffusion. In this theory,
the coupled thermoelastic model is used. This implies infinite speeds of propagation of
thermoelastic waves. Recently, Sherief et al. [21] developed the theory of generalized
thermoelastic diffusion that predicts finite speeds of propagation for thermoelastic and
diffusive waves.

2 Formulation of the Problem

We consider the problem of an isotropic thermoelastic half-space (x ≥ 0) with a per-
meating substance (such as a gas) in contact with the upper plane of the half-space
(x = 0). The x-axis is taken perpendicular to the upper plane pointing inwards. This
upper plane of the half-space is taken to be traction free and is subjected to a time-
dependent thermal shock. The chemical potential is also assumed to be a known func-
tion of time on the upper plane. All considered functions are assumed to be bounded
and vanish as x → ∞.

The equation of motion in the absence of body forces is given by [21]

ρ üi = µ ui, j j +(λ + µ) u j,i j −β1 T,i −β2 C,i , (1)
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where ui are the components of the displacement vector, T is the absolute temperature,
C is the concentration of the diffusive material in the elastic body, λ,µ are Lamé’s
constants, ρ is the density, and β1 and β2 are the material constants given by

β1 = (3λ + 2µ)αt and β2 = (3λ + 2µ)αc,

αt is the coefficient of linear thermal expansion, and αc is the coefficient of linear
diffusion expansion.

The energy equation has the form [21],

kT,i i = ρcE (Ṫ + τ0T̈ ) + β1 T0(ėkk + τ0ëkk) + aT0(Ċ + τ0C̈), (2)

where k is the thermal conductivity, cE is the specific heat at constant strain, τ0 is
the thermal relaxation time, ‘a’ is a measure of the thermodiffusion effect, T0 is a
reference temperature assumed to obey the inequality |(T − T0)/T0| << 1, and ei j

represents the components of the strain tensor given by

ei j = 1

2
(ui, j + u j,i ). (3)

The diffusion equation has the form [21],

d β2 ekk,i i + daT,i i + Ċ + τ C̈ − db C,i i = 0, (4)

where d is the diffusion coefficient, b is a measure of the diffusive effect, and τ is the
diffusion relaxation time.

The constitutive equations have the form [21],

σi j = 2µ ei j + δi j
[
λekk − β1(T − T0) − β2 C

]
, (5a)

P = −β2 ekk + bC − a(T − T0), (5b)

where σi j are the components of the stress tensor and P is the chemical potential.
It follows from the description of the problem that all considered functions will

depend on x and t only. We, thus, obtain the displacement components of the form,

ux = u(x, t), uy = uz = 0. (6)

The strain components are given by

exx = Du, eyy = ezz = exy = eyz = ezx = 0,

where D = ∂
∂x .

The cubical dilatation e = ekk is equal to

e =Du. (7)
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From Eq. 5a, it follows that the stress tensor components have the form,

σ = σxx = (λ + 2µ)Du − β1(T − T0) − β2 C, (8a)

σyy = σzz = λDu − β1(T − T0) − β2 C, (8b)

σxy = σyz = σzx = 0. (9)

Equations 1, 2, and 4, thus, reduce to

ρü = µD2u + (λ + µ) De − β1 DT − β2 DC, (10)

kD2T = ρcE
(
Ṫ + τ0T̈

) + β1 T0 (Du̇ + τ0Dü) + aT0
(
Ċ + τ0C̈

)
(11)

d β2 D2e + daD2T + Ċ + τ C̈ − dbD2C = 0. (12)

By using Eq. 7, Eqs. 10–12 can be written as

ρü = (λ + 2µ)De − β1 DT − β2 DC, (13)

kD2T = ρ cE
(
Ṫ + τ0T̈

) + β1 T0 (ė + τ0ë) + aT0
(
Ċ + τ0C̈

)
, (14)

d β2 D2e + daD2T + Ċ + τ C̈ − dbD2C = 0. (15)

The governing equations can be put in a more convenient form by using the following
dimensionless variables:

x∗ = c1η x, u∗ = c1η u, t∗ = c2
1η t, τ ∗

0 = c2
1η τ0, τ

∗ = c2
1η τ,

θ∗ = β1(T − T0)

λ + 2µ
, C∗ = β2C

λ + 2µ
, P∗ = P

β2
, σ ∗

i j = σi j

λ + 2µ
,

where c2
1 = (λ + 2µ)/ρ, η = ρcE/k.

Using the above dimensionless variables, Eqs. 13–15 take the following form where
we have dropped the asterisks for convenience:

ü = D2u − D θ − D C, (16)

D2θ = θ̇ + τ0θ̈ + ε ė + τ0ë + ε α1
(
Ċ + τ0C̈

)
, (17)

D2e + α1D2θ + α2
(
Ċ + τ C̈

) − α3D2 C = 0, (18)

where ε = β2
1 T0

ρcE (λ+2µ)
, α1 = a(λ+2µ)

β1β2
, α2 = λ+2 µ

β2
2 d η

, α3 = b(λ+2µ)

β2
2

.

Also, Eqs. 5b and 8a,b take the form,

σxx = e − θ − C, (19a)

σyy = σzz =
(

1 − 2/ β2
)

e − θ − C, (19b)

P = α3C − e − α1θ, (20)
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where β2 = (λ + 2µ)/µ.

The initial conditions of the problem are taken to be homogeneous while the bound-
ary conditions are assumed to be

σ(x, t) |x=h = 0, u(x, t) |x=−h = 0, (21)

θ(x, t) |x=h = f1(t),
∂ θ(x, t)

∂ x
|x=−h = 0, (22)

P(x, t) |x=h = f2(t),
∂ C(x, t)

∂ x
|x=−h = 0, (23)

where f1(t) and f2(t) are known functions of t . This means that the lower surface is
laid on a rigid foundation that is thermally insulated and impermeable while the upper
surface is traction free and acted upon by two shocks.

3 Solution in the Laplace Transform Domain

Introducing the Laplace transform defined by the formula,

f̄ (s) =
∞∫

0

e−st f (t)dt,

into Eqs. 16–20 and using the homogeneous initial conditions, we obtain

s2 ū = D2 ū − D θ̄ − D C̄, (24)

D2 θ̄ =
(

s + τ0s2
) [

θ̄ + ε ē + ε α1C̄
]
, (25)

D2 ē + α1D2 θ̄ +
[
α2

(
s + τ s2

)
− α3D2

]
C̄ = 0, (26)

σ̄xx = ē − θ̄ − C̄, (27a)

σ̄yy = σ̄zz =
(

1 − 2/β2
)

ē − θ̄ − C̄, (27b)

P̄ = α3C̄ − ē − α1θ̄ . (28)

Taking the divergence of Eq. 24, we obtain

(D2 − s2)ē − D2θ̄ − D2C̄ = 0. (29)

Eliminating ē and C̄ among Eqs. 25, 26, and 29, we obtain

(D6 − a1 D4 + a2 D2 − a3)θ̄ = 0, (30)
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where

a1 = s

α3 − 1
[(1 + τ0s) (α1 ε (α1 + 2) + α3(ε + 1) − 1) + α2(1 + τ s) + α3s] ,

a2 = s2

α3 − 1

[
(1 + τ0s)

(
ε s α2

1 + α3s + α2(ε + 1)(1 + τ s)
)

+ α2s(1 + τ s)
]
,

a3 = s4 α2

α3 − 1
(1 + τ s)(1 + τ0s).

In a similar manner, we can show that ē and C̄ satisfy the equations,

(D6 − a1 D4 + a2 D2 − a3)ē = 0, (31)

(D6 − a1 D4 + a2 D2 − a3)C̄ = 0. (32)

Equation 30 can be factorized as

(D2 − k2
1)(D2 − k2

2)(D2 − k2
3)θ̄ = 0, (33)

where k1, k2, and k3 are the roots with positive real parts of the characteristic equation,

k6 − a1 k4 + a2 k2 − a3 = 0. (34)

The solution of Eq. 33 has the form,

θ̄ (x, s) =
3∑

i=1

(
Ai e

− ki x + Bi e
ki x

)
, (35)

where Ai = Ai (s) and Bi = Bi (s) are parameters depending on s only.
Similarly, the solution of Eqs. 31 and 32 can be written as

ē(x, s) =
3∑

i=1

(
A′

i e
− ki x + B ′

i e
ki x

)
, (36)

C̄(x, s) =
3∑

i=1

(
A′′

i e− ki x + B ′′
i e ki x

)
, (37)

where A′
i , B ′

i , A′′
i , and B ′′

i are parameters depending only on s.
Substituting from Eqs. 35–37 into Eqs. 25, 26, and 29, we get

A′
i = k2

i [k2
i − (1 − ε α1)(s + τ0 s2)]

ε (s + τ0 s2)[(1 + α1) k2
i − α1 s2] Ai , (38a)

B ′
i = k2

i [k2
i − (1 − ε α1)(s + τ0 s2)]

ε (s + τ0 s2)[(1 + α1) k2
i − α1 s2] Bi , (38b)

123



2050 Int J Thermophys (2009) 30:2044–2057

A′′
i = k4

i − k2
i [s2 +(ε + 1)(s + τ0 s2)] + s3(1 + τ0s)

ε (s + τ0 s2)[(1 + α1) k2
i − α1 s2] Ai , (39a)

B ′′
i = k4

i − k2
i [s2 +(ε + 1)(s + τ0 s2)] + s3(1 + τ0s)

ε (s + τ0 s2)[(1 + α1) k2
i − α1 s2] Bi . (39b)

We thus have

ē(x, s) =
3∑

i=1

k2
i [k2

i − (1 − ε α1)(s + τ0 s2)]
ε (s + τ0 s2)[(1 + α1) k2

i − α1 s2]
(

Ai e
− ki x + Bi e

ki x
)

, (40)

C̄(x, s) =
3∑

i=1

k4
i − k2

i [s2 +(ε + 1)(s + τ0 s2)] + s3(1 + τ0s)

ε (s + τ0 s2)[(1 + α1) k2
i − α1 s2]

×
(

Ai e
− ki x + Bi e

ki x
)

. (41)

Integrating both sides of Eq. 7, we obtain upon using the relation, Eq. 40,

ū(x, s) =
3∑

i=1

ki [k2
i − (1 − ε α1)(s + τ0 s2)]

ε (s + τ0 s2)[(1 + α1) k2
i − α1 s2]

(
−Ai e

− ki x + Bi e
ki x

)
. (42)

Substituting from Eqs. 35, 40, and 41 into Eqs. 27a and 28, we get

σ̄xx (x, s) = s

ε (1 + τ0 s)

3∑

i=1

[k2
i − (1 − ε α1)(s + τ0 s2)]
[(1 + α1) k2

i − α1 s2]
(

Ai e
− ki x + Bi e

ki x
)

,

(43)

P̄(x, s) = α2 (1 + τ s)

ε (1 + τ0s)

3∑

i=1

k4
i − k2

i [s2 +(ε + 1)(s + τ0 s2)] + s3(1 + τ0s)

k2
i [(1 + α1) k2

i − α1 s2]
×

(
Ai e

− ki x + Bi e
ki x

)
. (44)

In order to evaluate the unknown parameters, we shall use the Laplace transform of the
boundary conditions, Eqs. 21–23, together with Eqs. 35, 43, and 44. We, thus, arrive
at the following set of linear equations:
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3∑

i=1

[k2
i − (1 − ε α1)(s + τ0 s2)]
[(1 + α1) k2

i − α1 s2]
(

Ai e
− ki h + Bi e

ki h
)

= 0, (45)

3∑

i=1

(
Ai e

− ki h + Bi e
ki h

)
= f̄1(s), (46)

3∑

i=1

k4
i − k2

i [s2 +(ε + 1)(s + τ0 s2)] + s3(1 + τ0s)

k2
i [(1 + α1) k2

i − α1 s2]
(

Ai e
− ki h + Bi e

ki h
)

= f̄2(s) ε (1 + τ0s)

α2(1 + τ s)
, (47)

3∑

i=1

ki

(
−Ai e

ki h + Bi e
− ki h

)
= 0, (48)

3∑

i=1

ki [k2
i − (1 − ε α1)(s + τ0 s2)]
(1 + α1) k2

i − α1 s2

(
−Ai e

ki h + Bi e
−ki h

)
= 0, (49)

3∑

i=1

k4
i − k2

i [s2 +(ε + 1)(s + τ0 s2)] + s3(1 + τ0s)

k2
i [(1 + α1) k2

i − α1 s2]
×

(
Ai e

ki h + Bi e
−ki h

)
= 0. (50)

Solving the linear system of Eqs. 45–50, we can obtain the parameters A1 − A3 and
B1 − B3. This completes the solution of the problem in the Laplace transform domain.

4 Inversion of the Laplace Transform

We shall now outline the method used to invert the Laplace transforms in the above
equations. Let f̄ (x, s) be the Laplace transform of a function f(x, t). The inversion
formula for Laplace transforms can be written as [22]

f (x, t) = 1

2π i

c+i∞∫

c−i∞
est f̄ (x, s)ds,

where c is an arbitrary real number greater than all the real parts of the singularities
of f̄ (s).

Taking s = c + iy, the above integral takes the form,

f (x, t) = ect

2π

∞∫

−∞
eit y f̄ (x, c + iy)dy.
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Expanding the function h(x, t) = exp(−ct) f(x, t) in a Fourier series in the interval
[0,2T], we obtain the approximate formula [23]

f (x, t) = f∞(x, t) + ED,

where

f∞(x, t) = 1
2 c0(x, t) +

∞∑

k=1

ck(x, t) for 0 ≤ t ≤ 2T, (51)

and

ck(x, t) = ect

T
Re [eikπ t/T f̄ (x, c + ikπ/T )], k = 0, 1, 2, . . . (52)

ED, the discretization error, can be made arbitrarily small by choosing the constant d
large enough [23].

As the infinite series in Eq. 51 can only be summed up to a finite number N of
terms, the approximate value of f(x, t) becomes

fN (x, t) = 1
2 c0(x, t) +

N∑

k=1

ck(x, t) for 0 ≤ t ≤ 2T . (53)

Using the above formula to evaluate f(x, t), we introduce a truncation error, ET, that
must be added to the discretization error to produce the total approximation error.

Two methods are used to reduce the total error. First, the “Korrecktur” method [23]
is used to reduce the discretization error. Next, the ε-algorithm is used to reduce the
truncation error and hence to accelerate convergence.

The Korrecktur method uses the following formula to evaluate the function f (x, t):

f (x, t) = f∞(x, t) − e−2cT f∞(x, 2T + t) + E ′
D,

where the discretization error
∣∣E ′

D

∣∣ << |ED| [23]. Thus, the approximate value of
f (x, t) becomes

fN K (x, t) = fN (x, t) − e−2cT fN ′(x, 2T + t), (54)

N ′ is an integer such that N ′ < N .
We shall now describe the ε-algorithm that is used to accelerate the convergence

of the series in Eq. 53. Let N be an odd natural number, and let

sm(x, t) =
m∑

k=1

ck(x, t)
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be the sequence of partial sums of Eq. 53. We define the ε-sequence by

ε0,m = 0, ε1,m = sm

and

εp+1,m = εp−1,m+1 + 1/(εp,m+1 − εp,m), p = 1, 2, 3, . . .

It can be shown that [23] the sequence,

ε1,1, ε3,1, ε5,1, . . . , εN ,1

converges to f (x, t) + ED − c0/2 faster than the sequence of partial sums,

sm, m = 1, 2, 3, . . .

The actual procedure used to invert the Laplace transforms consists of using Eq. 54
together with the ε-algorithm. The values of c and T are chosen according to the
criteria outlined in [23].

5 Numerical Results

For the purpose of numerical illustration, the problem was solved for the following
choice of the functions f1(t) and f2(t):

f1(t) = θ0 H(t),

f2(t) = P0 H(t),

where θ0 and P0 are constants and H(t) is the Heaviside unit step function.
We, thus, have

f̄1(s) = θ0

s
,

f̄2(s) = P0

s
.

The roots k1 , k2, and k3 of the characteristic equation are given by

k1 =
√

1

3
[2p sin q + a1] ,

k2 =
√

1

3
[a1 − p (

√
3 cos q + sin q)] ,

k3 =
√

1

3
[a1 + p (

√
3 cos q − sin q)] ,
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Fig. 1 Temperature distribution

where

p =
√

(a2
1 −3 a2), q = sin−1(r)

3
, and r = −2 a3

1 −9 a1 a2 +27 a3

2 p3 .

Copper material was chosen for purposes of numerical evaluations. The material con-
stants of the problem are thus given by in SI units [24]:

T0 = 293 K, ρ = 8,954 kg ·m−3, τ0 = 0.02 s, τ= 0.2 s,
cE = 383.1 J ·kg−1·K−1, αt = 1.78 × 10−5 K−1, k = 386 W·m−1·K−1,
λ = 7.76 × 1010 kg ·m−1·s−2, µ = 3.86 × 1010 kg ·m−1·s−2,
αc = 1.98 × 10−4 m3·kg−1, d = 0.85 × 10−8 kg · s ·m−3,
a = 1.2 × 104 m2·s−2·K−1, b = 0.9 × 106 m5·kg−1·s−2.

Using these values, it was found that

η = 8886.73, ε = 0.0168, β2 = 4, α1 = 5.43, α2 = 0.533, and α3 = 36.24.

It should be noted that a unit of dimensionless time corresponds to 6.5 × 10−12 s, while
a unit of dimensionless length corresponds to 2.7 × 10−8 m.

The computations were carried out for three values of dimensionless time, namely,
for t = 0.05, t = 0.1, and t = 0.15. The temperature, displacement, stress, concentration,
and chemical potential are shown in Figs. 1, 2, 3, 4, and 5, respectively. Dotted lines
represent the case when t = 0.05, dashed lines represent the case when t = 0.1, while
solid lines represent the case when t = 0.15.

As expected from the order of the partial differential equation, we have three waves
emanating from each surface; the fronts of these waves are depicted in the figures as
discontinuities in the functions in Figs. 1 and 3–5 or in the first derivative in Fig. 2
because the displacement is a continuous function. Of course, some of these discon-
tinuities are very small to show in the figures.
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Fig. 2 Displacement distribution
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Fig. 3 Stress distribution
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Fig. 4 Concentration distribution
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Fig. 5 Chemical potential distribution

Table 1 Location of wave
fronts

t Location of wave fronts

0.05 −0.428 0.149 0.451
0.1 −0.202 0.355 Reflected 0.402
0.15 −0.447 −0.283 Reflected twice 0.353

It was found that there are three waves with dimensionless speeds of

ν1 = 0.98, ν2 = 7.02, ν3 = 18.55.

The locations of the fronts of these waves are shown in Table 1 for different values of
time.

It is clear from the graphs that the effect of diffusion on the temperature and dis-
placement is very weak but has a noticeable effect on the stress.
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